Role of the PAS sensor domains in the Bacillus subtilis sporulation kinase KinA.
نویسندگان
چکیده
Histidine kinases are sophisticated molecular sensors that are used by bacteria to detect and respond to a multitude of environmental signals. KinA is the major histidine kinase required for initiation of sporulation upon nutrient deprivation in Bacillus subtilis. KinA has a large N-terminal region (residues 1 to 382) that is uniquely composed of three tandem Per-ARNT-Sim (PAS) domains that have been proposed to constitute a sensor module. To further enhance our understanding of this "sensor" region, we defined the boundaries that give rise to the minimal autonomously folded PAS domains and analyzed their homo- and heteroassociation properties using analytical ultracentrifugation, nuclear magnetic resonance (NMR) spectroscopy, and multiangle laser light scattering. We show that PAS(A) self-associates very weakly, while PAS(C) is primarily a monomer. In contrast, PAS(B) forms a stable dimer (K(d) [dissociation constant] of <10 nM), and it appears to be the main N-terminal determinant of KinA dimerization. Analysis of KinA mutants deficient for one or more PAS domains revealed a critical role for PAS(B), but not PAS(A), in autophosphorylation of KinA. Our findings suggest that dimerization of PAS(B) is important for keeping the catalytic domain of KinA in a functional conformation. We use this information to propose a model for the structure of the N-terminal sensor module of KinA.
منابع مشابه
The PAS domains of the major sporulation kinase in Bacillus subtilis play a role in tetramer formation that is essential for the autokinase activity
Sporulation in Bacillus subtilis is induced upon starvation. In a widely accepted model, an N-terminal "sensor" domain of the major sporulation kinase KinA recognizes a hypothetical starvation signal(s) and autophosphorylates a histidine residue to activate the master regulator Spo0A via a multicomponent phosphorelay. However, to date no confirmed signal has been found. Here, we demonstrated th...
متن کاملExpression level of a chimeric kinase governs entry into sporulation in Bacillus subtilis.
Upon starvation, Bacillus subtilis cells switch from growth to sporulation. It is believed that the N-terminal sensor domain of the cytoplasmic histidine kinase KinA is responsible for detection of the sporulation-specific signal(s) that appears to be produced only under starvation conditions. Following the sensing of the signal, KinA triggers autophosphorylation of the catalytic histidine resi...
متن کاملPAS-A domain of phosphorelay sensor kinase A: a catalytic ATP-binding domain involved in the initiation of development in Bacillus subtilis.
The major sensor kinase controlling the initiation of development in Bacillus subtilis, KinA, functions by activating the phosphorelay signal-transduction system in response to as yet unknown signal ligands. KinA contains, within its amino-terminal signal-sensing region, three PAS domains that, in other proteins, are known to be involved in sensing changes in oxygen concentration and redox pote...
متن کاملGenetic and biochemical analyses of sensor kinase A in Bacillus subtilis sporulation.
Temporal and spatial regulation of gene expression during endospore formation in Bacillus subtilis prompted us to investigate the molecular mechanisms that coordinate the phosphorelay. We targeted KinA for random mutagenesis. In addition, we constructed KinA-GFP transcriptional fusions for verification, via fluorescence. Four distinct types of sporulation-defective mutants were identified as in...
متن کاملIsolation and characterization of kinC, a gene that encodes a sensor kinase homologous to the sporulation sensor kinases KinA and KinB in Bacillus subtilis.
Phosphorylation of the transcription factor encoded by spo0A is required for the initiation of sporulation in Bacillus subtilis. Production and accumulation of Spo0A-P is controlled by histidine protein kinases and the spo0 gene products. To identify additional genes that might be involved in the initiation of sporulation and production of Spo0A-P, we isolated genes which when present on a mult...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of bacteriology
دوره 195 10 شماره
صفحات -
تاریخ انتشار 2013